Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Immunol ; 13: 1000006, 2022.
Article in English | MEDLINE | ID: covidwho-2318073

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to a global health outbreak known as the COVID-19 pandemic which has been lasting since March 2020. Vaccine became accessible to people only at the beginning of 2021 which greatly helped reducing the mortality rate and severity of COVID-19 infection afterwards. The efficacy of vaccines was not fully known and studies documenting the immune responses following vaccination are continuing to emerge. Recent evidence indicate that natural infection prior vaccination may improve the antibody and cellular immune responses, while little is known about the factors influencing those processes. Here we investigated the antibody responses following BNT162b2 vaccination in relation to previous-infection status and age, and searched for possible biomarkers associated with the observed changes in immune responses. We found that the previous-infection status caused at least 8-times increase in the antibody titres, effect that was weaker in people over 60 years old and unaltered by the vitamin D serum levels. Furthermore, we identified adiponectin to positively associate with antibody responses and negatively correlate with pro-inflammatory molecules (MCP-1, factor D, CRP, PAI-1), especially in previously-infected individuals.


Subject(s)
COVID-19 , Viral Vaccines , Adipokines , Adiponectin , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Complement Factor D , Humans , Middle Aged , Pandemics , Plasminogen Activator Inhibitor 1 , SARS-CoV-2 , Vaccination , Vitamin D , Vitamins
2.
Cureus ; 14(7): e26917, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2311420

ABSTRACT

Cerebral venous sinus thrombosis (CVST) is a rare etiology of stroke that results from inherited and/or acquired conditions, which can present in a variety of symptoms. CVST in the setting of the 2019 coronavirus disease (COVID-19) has rarely been observed. Herein, we present the case of a 32-year-old female with a recent history of COVID-19 subsequently found to have CVST involving bilateral transverse sinuses. Further workup demonstrated several hypercoagulable conditions, which were likely exacerbated by the viral infection. This case demonstrates an atypical outcome for young, COVID-19-positive patients, which emphasizes the importance of diligence when examining symptomatic patients with a history of COVID-19 infection. The patient was treated with apixaban therapy with radiographic resolution of bilateral CVST and improved vision.

3.
Res Pract Thromb Haemost ; 5(4): e12525, 2021 May.
Article in English | MEDLINE | ID: covidwho-2253616

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with activation of coagulation that mainly presents as thrombosis. Sepsis is also associated with activation of coagulation that mainly presents as disseminated intravascular coagulation. Many studies have reported increased levels of plasma d-dimer in patients with COVID-19 that is associated with severity, thrombosis, and mortality. OBJECTIVES: The aim of this study was to compare levels of circulating extracellular vesicle tissue factor (EVTF) activity and active plasminogen activator inhibitor 1 (PAI-1) in plasma from patients with COVID-19 or sepsis. METHODS: We measured levels of d-dimer, EVTF activity, and active PAI-1 in plasma samples from patients with COVID-19 (intensive care unit [ICU], N = 15; and non-ICU, N = 20) and patients with sepsis (N = 35). RESULTS: Patients with COVID-19 had significantly higher levels of d-dimer, EVTF activity, and active PAI-1 compared with healthy controls. Patients with sepsis had significantly higher levels of d-dimer and EVTF activity compared with healthy controls. Levels of d-dimer were significantly lower in patients with COVID-19 compared with patients with sepsis. Levels of EVTF activity were significantly higher in ICU patients with COVID-19 compared with patients with sepsis. Levels of active PAI-1 were significantly higher in patients with COVID-19 compared with patients with sepsis. CONCLUSIONS: High levels of both EVTF activity and active PAI-1 may promote thrombosis in patients with COVID-19 due to simultaneous activation of coagulation and inhibition of fibrinolysis. The high levels of active PAI-1 in patients with COVID-19 may limit plasmin degradation of crosslinked fibrin and the release of d-dimer. This may explain the lower levels of D-dimer in patients with COVID-19 compared with patients with sepsis.

4.
Turkish Journal of Biochemistry ; 47(5):672-679, 2022.
Article in English | EMBASE | ID: covidwho-2227885

ABSTRACT

Objectives: Studies have shown that fibrinolysis activity is insufficient in COVID-19 patients. Plasminogen activator inhibitor-1 (PAI-1) is an important antifibrinolytic molecule that plays a key role in the fibrinolytic system. In our study;we aimed to evaluate serum PAI-1 and other biochemical parameters of COVID-19 patients in terms of disease course and mortality. Method(s): A total of 40 COVID-19 patients were hospitalized in the service and intensive care unit (ICU) of our hospital from October to December 2020 and 20 healthy volunteers were included in our study. The patients were grouped as those who transferred to the ICU from the service and transferred to service from the ICU. The first and second values of the same patients in both the service and the ICU were analyzed by SPSS. Result(s): The PAI-1 levels of the patients in the ICU were significantly higher than the levels of the same patients in the service and the healthy control group (p<0.001). IL-6, ferritin, and D-dimer levels in the ICU of the same patients were significantly higher than the levels of service and healthy control group (p<0.001). A positive correlation was found between initial serum PAI-1 and D-dimer levels in patients hospitalized in the service (p=0.039) and initial serum ferritin and IL-6 levels in the ICU (p=0.031). Conclusion(s): In our study, we found that PAI-1 levels increased significantly with the increase in mortality in COVID-19 patients. Copyright © 2022 the author(s), published by De Gruyter.

5.
Front Cardiovasc Med ; 8: 653655, 2021.
Article in English | MEDLINE | ID: covidwho-2198735

ABSTRACT

Plasminogen activator inhibitor 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. PAI-1 is the principal inhibitor of the plasminogen activators, tissue plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA). Turbulence in the levels of PAI-1 tilts the balance of the hemostatic system resulting in bleeding or thrombotic complications. Not surprisingly, there is strong evidence that documents the role of PAI-1 in cardiovascular disease. The more recent uncovering of the coalition between the hemostatic and inflammatory pathways has exposed a distinct role for PAI-1. The storm of proinflammatory cytokines liberated during inflammation, including IL-6 and TNF-α, directly influence PAI-1 synthesis and increase circulating levels of this serpin. Consequently, elevated levels of PAI-1 are commonplace during infection and are frequently associated with a hypofibrinolytic state and thrombotic complications. Elevated PAI-1 levels are also a feature of metabolic syndrome, which is defined by a cluster of abnormalities including obesity, type 2 diabetes, hypertension, and elevated triglyceride. Metabolic syndrome is in itself defined as a proinflammatory state associated with elevated levels of cytokines. In addition, insulin has a direct impact on PAI-1 synthesis bridging these pathways. This review describes the key physiological functions of PAI-1 and how these become perturbed during disease processes. We focus on the direct relationship between PAI-1 and inflammation and the repercussion in terms of an ensuing hypofibrinolytic state and thromboembolic complications. Collectively, these observations strengthen the utility of PAI-1 as a viable drug target for the treatment of various diseases.

6.
Front Immunol ; 13: 930673, 2022.
Article in English | MEDLINE | ID: covidwho-2198851

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is one of the fastest-evolving viral diseases that has instigated a worldwide pandemic. Severe inflammatory syndrome and venous thrombosis are commonly noted in COVID-19 patients with severe and critical illness, contributing to the poor prognosis. Interleukin (IL)-6, a major complex inflammatory cytokine, is an independent factor in predicting the severity of COVID-19 disease in patients. IL-6 and tumor necrosis factor (TNF)-α participate in COVID-19-induced cytokine storm, causing endothelial cell damage and upregulation of plasminogen activator inhibitor-1 (PAI-1) levels. In addition, IL-6 and PAI-1 form a vicious cycle of inflammation and thrombosis, which may contribute to the poor prognosis of patients with severe COVID-19. Targeted inhibition of IL-6 and PAI-1 signal transduction appears to improve treatment outcomes in severely and critically ill COVID-19 patients suffering from cytokine storms and venous thrombosis. Motivated by studies highlighting the relationship between inflammatory cytokines and thrombosis in viral immunology, we provide an overview of the immunothrombosis and immunoinflammation vicious loop between IL-6 and PAI-1. Our goal is that understanding this ferocious circle will benefit critically ill patients with COVID-19 worldwide.


Subject(s)
COVID-19 , Critical Illness , Cytokine Release Syndrome , Cytokines/metabolism , Humans , Interleukin-6 , Plasminogen Activator Inhibitor 1 , SARS-CoV-2 , Tumor Necrosis Factor-alpha
7.
Turkish Journal of Biochemistry / Turk Biyokimya Dergisi ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2054462

ABSTRACT

Studies have shown that fibrinolysis activity is insufficient in COVID-19 patients. Plasminogen activator inhibitor-1 (PAI-1) is an important antifibrinolytic molecule that plays a key role in the fibrinolytic system. In our study;we aimed to evaluate serum PAI-1 and other biochemical parameters of COVID-19 patients in terms of disease course and mortality.A total of 40 COVID-19 patients were hospitalized in the service and intensive care unit (ICU) of our hospital from October to December 2020 and 20 healthy volunteers were included in our study. The patients were grouped as those who transferred to the ICU from the service and transferred to service from the ICU. The first and second values of the same patients in both the service and the ICU were analyzed by SPSS.The PAI-1 levels of the patients in the ICU were significantly higher than the levels of the same patients in the service and the healthy control group (p<0.001). IL-6, ferritin, and D-dimer levels in the ICU of the same patients were significantly higher than the levels of service and healthy control group (p<0.001). A positive correlation was found between initial serum PAI-1 and D-dimer levels in patients hospitalized in the service (p=0.039) and initial serum ferritin and IL-6 levels in the ICU (p=0.031).In our study, we found that PAI-1 levels increased significantly with the increase in mortality in COVID-19 patients. [ FROM AUTHOR] Copyright of Turkish Journal of Biochemistry / Turk Biyokimya Dergisi is the property of De Gruyter and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

8.
Int J Hematol ; 116(6): 937-946, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2000116

ABSTRACT

Severe coronavirus disease-19 (COVID-19) has been associated with fibrin-mediated hypercoagulability and thromboembolic complications. To evaluate potential biomarkers of coagulopathy and disease severity in COVID-19, we measured plasma levels of eight biomarkers potentially associated with coagulation, fibrinolysis, and platelet function in 43 controls and 63 COVID-19 patients, including 47 patients admitted to the intensive care unit (ICU) and 16 non-ICU patients. COVID-19 patients showed significantly elevated levels of fibrinogen, tissue plasminogen activator (t-PA), and its inhibitor plasminogen activation inhibitor 1 (PAI-1), as well as ST2 (the receptor for interleukin-33) and von Willebrand factor (vWF) compared to the control group. We found that higher levels of t-PA, ST2, and vWF at the time of admission were associated with lower survival rates, and that thrombotic events were more frequent in patients with initial higher levels of vWF. These results support a predictive role of specific biomarkers such as t-PA and vWF in the pathophysiology of COVID-19. The data provide support for the case that hypercoagulability in COVID-19 is fibrin-mediated, but also highlights the important role that vWF may play in the genesis of thromboses in the pathophysiology of COVID-19. Interventions designed to enhance fibrinolysis might prove to be useful adjuncts in the treatment of coagulopathy in a subset of COVID-19 patients.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thrombophilia , Thrombosis , Humans , COVID-19/complications , von Willebrand Factor , Tissue Plasminogen Activator , Interleukin-1 Receptor-Like 1 Protein , Thrombosis/etiology , Fibrinolysis , Blood Coagulation Disorders/etiology , Biomarkers , Thrombophilia/complications , Fibrin
9.
J Thromb Haemost ; 20(10): 2394-2406, 2022 10.
Article in English | MEDLINE | ID: covidwho-1916259

ABSTRACT

BACKGROUND: Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. This study investigates whether the hemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS: This prospective study analyzed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella system or ELISA, clot lysis by turbidimetric assay, and plasminogen activator inhibitor-1 (PAI-1)/plasmin activity using chromogenic substrates. Clot structure was visualized by confocal microscopy. RESULTS: PAI-1 and its cofactor, vitronectin, are significantly elevated in patients with COVID-19 disease compared with those with non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in patients with COVID-19 disease relative to healthy controls. PAI-1 and tissue plasminogen activator (tPA) were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fiber length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant (tPA) variant, tenecteplase, over alteplase lysis. CONCLUSION: This study shows that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1, which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the possibility of using pre-existing drugs, such as tenecteplase, to treat COVID-19 disease and potentially other respiratory diseases.


Subject(s)
COVID-19 Drug Treatment , Carboxypeptidase B2 , Hemostatics , Thrombosis , Chromogenic Compounds , Fibrin , Fibrinolysin/pharmacology , Fibrinolysis , Hemostatics/pharmacology , Humans , Plasminogen Activator Inhibitor 1 , Prospective Studies , Tenecteplase , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Vitronectin
10.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1847346

ABSTRACT

The fibrinolytic system is composed of the protease plasmin, its precursor plasminogen and their respective activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), counteracted by their inhibitors, plasminogen activator inhibitor type 1 (PAI-1), plasminogen activator inhibitor type 2 (PAI-2), protein C inhibitor (PCI), thrombin activable fibrinolysis inhibitor (TAFI), protease nexin 1 (PN-1) and neuroserpin. The action of plasmin is counteracted by α2-antiplasmin, α2-macroglobulin, TAFI, and other serine protease inhibitors (antithrombin and α2-antitrypsin) and PN-1 (protease nexin 1). These components are essential regulators of many physiologic processes. They are also involved in the pathogenesis of many disorders. Recent advancements in our understanding of these processes enable the opportunity of drug development in treating many of these disorders.


Subject(s)
Fibrinolysin , Fibrinolysis , Fibrinolysin/metabolism , Fibrinolysis/physiology , Plasminogen/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Protease Nexins , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , alpha-2-Antiplasmin
11.
mBio ; 13(3): e0089222, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1832359

ABSTRACT

The coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection. With a transcriptomics-based approach, we found that less susceptible donors show a higher expression level of serine protease inhibitors SERPINA1, SERPINE1, and SERPINE2, identifying variation in cellular serpin levels as restricting host factors for SARS-CoV-2 infection. We pinpoint their antiviral mechanism of action to inhibition of the cellular serine protease, TMPRSS2, thereby preventing cleavage of the viral spike protein and TMPRSS2-mediated entry into the target cells. By means of single-cell RNA sequencing, we further locate the expression of the individual serpins to basal, ciliated, club, and goblet cells. Our results add to the importance of genetic variations as determinants for SARS-CoV-2 susceptibility and suggest that genetic deficiencies of cellular serpins might represent risk factors for severe COVID-19. Our study further highlights TMPRSS2 as a promising target for antiviral intervention and opens the door for the usage of locally administered serpins as a treatment against COVID-19. IMPORTANCE Identification of host factors affecting individual SARS-CoV-2 susceptibility will provide a better understanding of the large variations in disease severity and will identify potential factors that can be used, or targeted, in antiviral drug development. With the use of an advanced lung cell model established from several human donors, we identified cellular protease inhibitors, serpins, as host factors that restrict SARS-CoV-2 infection. The antiviral mechanism was found to be mediated by the inhibition of a serine protease, TMPRSS2, which results in a blockage of viral entry into target cells. Potential treatments with these serpins would not only reduce the overall viral burden in the patients, but also block the infection at an early time point, reducing the risk for the hyperactive immune response common in patients with severe COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Serine Proteinase Inhibitors , Serpins , Antiviral Agents/pharmacology , Humans , Plasminogen Activator Inhibitor 1 , SARS-CoV-2 , Serine Endopeptidases , Serine Proteinase Inhibitors/pharmacology , Serpin E2 , Serpins/genetics , Virus Internalization , alpha 1-Antitrypsin
12.
Phytomed Plus ; 2(2): 100252, 2022 May.
Article in English | MEDLINE | ID: covidwho-1783697

ABSTRACT

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

13.
EClinicalMedicine ; 39: 101069, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1499821

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with thrombotic and microvascular complications. The cause of coagulopathy in the disease is incompletely understood. METHODS: A single-center cross-sectional study including 66 adult COVID-19 patients (40 moderate, 26 severe disease), and 9 controls, performed between 04/2020 and 10/2020. Markers of coagulation, endothelial cell function [angiopoietin-1,-2, P-selectin, von Willebrand Factor Antigen (WF:Ag), von Willebrand Factor Ristocetin Cofactor, ADAMTS13, thrombomodulin, soluble Endothelial cell Protein C Receptor (sEPCR), Tissue Factor Pathway Inhibitor], neutrophil activation (elastase, citrullinated histones) and fibrinolysis (tissue-type plasminogen activator, plasminogen activator inhibitor-1) were evaluated using ELISA. Tissue Factor (TF) was estimated by antithrombin-FVIIa complex (AT/FVIIa) and microparticles-TF (MP-TF). We correlated each marker and determined its association with severity. Expression of pulmonary TF, thrombomodulin and EPCR was determined by immunohistochemistry in 9 autopsies. FINDINGS: Comorbidities were frequent in both groups, with older age associated with severe disease. All patients were on prophylactic anticoagulants. Three patients (4.5%) developed pulmonary embolism. Mortality was 7.5%. Patients presented with mild alterations in the coagulogram (compensated state). Biomarkers of endothelial cell, neutrophil activation and fibrinolysis were elevated in severe vs moderate disease; AT/FVIIa and MP-TF levels were higher in severe patients. Logistic regression revealed an association of D-dimers, angiopoietin-1, vWF:Ag, thrombomodulin, white blood cells, absolute neutrophil count (ANC) and hemoglobin levels with severity, with ANC and vWF:Ag identified as independent factors. Notably, postmortem specimens demonstrated epithelial expression of TF in the lung of fatal COVID-19 cases with loss of thrombomodulin staining, implying in a shift towards a procoagulant state. INTERPRETATION: Coagulation dysregulation has multifactorial etiology in SARS-Cov-2 infection. Upregulation of pulmonary TF with loss of thrombomodulin emerge as a potential link to immunothrombosis, and therapeutic targets in the disease. FUNDING: John Hopkins University School of Medicine.

14.
Am J Respir Cell Mol Biol ; 65(3): 300-308, 2021 09.
Article in English | MEDLINE | ID: covidwho-1381187

ABSTRACT

Endothelial dysfunction is implicated in the thrombotic events reported in patients with coronavirus disease (COVID-19), but the underlying molecular mechanisms are unknown. Circulating levels of the coagulation cascade activator PAI-1 are substantially higher in patients with COVID-19 with severe respiratory dysfunction than in patients with bacterial sepsis and acute respiratory distress syndrome. Indeed, the elevation of PAI-1 is recognized as an early marker of endothelial dysfunction. Here, we report that the rSARS-CoV-2-S1 (recombinant severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] viral envelope spike) glycoprotein stimulated robust production of PAI-1 by human pulmonary microvascular endothelial cells (HPMECs). We examined the role of protein degradation in this SARS-CoV-2-S1 induction of PAI-1 and found that the proteasomal degradation inhibitor bortezomib inhibited SARS-CoV-2-S1-mediated changes in PAI-1. Our data further show that bortezomib upregulated KLF2, a shear-stress-regulated transcription factor that suppresses PAI-1 expression. Aging and metabolic disorders are known to increase mortality and morbidity in patients with COVID-19. We therefore examined the role of ZMPSTE24 (zinc metallopeptidase STE24), a metalloprotease with a demonstrated role in host defense against RNA viruses that is decreased in older individuals and in metabolic syndrome, in the induction of PAI-1 in HPMECs by SARS-CoV-2-S1. Indeed, overexpression of ZMPSTE24 blunted enhancement of PAI-1 production in spike protein-exposed HPMECs. In addition, we found that membrane expression of the SARS-CoV-2 entry receptor ACE2 was reduced by ZMPSTE24-mediated cleavage and shedding of the ACE2 ectodomain, leading to accumulation of ACE2 decoy fragments that may bind SARS-CoV-2. These data indicate that decreases in ZMPSTE24 with age and comorbidities may increase vulnerability to vascular endothelial injury by SARS-CoV-2 viruses and that enhanced production of endothelial PAI-1 might play role in prothrombotic events in patients with COVID-19.


Subject(s)
COVID-19/virology , Endothelial Cells/pathology , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Artery/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Aging , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Plasminogen Activator Inhibitor 1/genetics , Proteolysis , Pulmonary Artery/metabolism , Pulmonary Artery/virology , Spike Glycoprotein, Coronavirus/genetics
15.
Viruses ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: covidwho-1244141

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) predominantly have a respiratory tract infection with various symptoms and high mortality is associated with respiratory failure second to severe disease. The risk factors leading to severe disease remain unclear. Here, we reanalyzed a published single-cell RNA-Seq (scRNA-Seq) dataset and found that bronchoalveolar lavage fluid (BALF) of patients with severe disease compared to those with mild disease contained decreased TH17-type cells, decreased IFNA1-expressing cells with lower expression of toll-like receptor 7 (TLR7) and TLR8, increased IgA-expressing B cells, and increased hyperactive epithelial cells (and/or macrophages) expressing matrix metalloproteinases (MMPs), hyaluronan synthase 2 (HAS2), and plasminogen activator inhibitor-1 (PAI-1), which may together contribute to the pulmonary pathology in severe COVID-19. We propose IFN-I (and TLR7/TLR8) and PAI-1 as potential biomarkers to predict the susceptibility to severe COVID-19.


Subject(s)
COVID-19/pathology , Lung/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/immunology , COVID-19/immunology , COVID-19/metabolism , Databases, Genetic , Humans , Hyaluronan Synthases/metabolism , Immunoglobulin A/metabolism , Interferon-alpha/metabolism , Lung/immunology , Lung/metabolism , Matrix Metalloproteinases/metabolism , Mucin-1/metabolism , Plasminogen Activator Inhibitor 1/metabolism , RNA-Seq , SARS-CoV-2 , Th17 Cells/metabolism , Th17 Cells/pathology
16.
Clin Appl Thromb Hemost ; 27: 1076029621999099, 2021.
Article in English | MEDLINE | ID: covidwho-1175260

ABSTRACT

Among COVID-19 hospitalized patients, high incidence of alterations in inflammatory and coagulation biomarkers correlates with a poor prognosis. Comorbidities such as chronic degenerative diseases are frequently associated with complications in COVID-19 patients. The aim of this study was to evaluate inflammatory and procoagulant biomarkers in COVID-19 patients from a public hospital in Mexico. Blood was sampled within the first 48 h after admission in 119 confirmed COVID-19 patients that were classified in 3 groups according to oxygen demand, evolution and the severity of the disease as follows: 1) Non severe: nasal cannula or oxygen mask; 2) Severe: high flow nasal cannula and 3) Death: mechanical ventilation eventually leading to fatal outcome. Blood samples from 20 healthy donors were included as a Control Group. Analysis of inflammatory and coagulation biomarkers including D-dimer, interleukin 6, interleukin 8, PAI-1, P-selectin and VWF was performed in plasma. Routine laboratory and clinical biomarkers were also included and compared among groups. Concentrations of D-dimer (14.5 ± 13.8 µg/ml) and PAI-1 (1223 ± 889.6 ng/ml) were significantly elevated in severe COVID-19 patients (P < 0.0001). A significant difference was found in interleukin-6, PAI-1 and P-selectin in non-severe and healthy donors when compared to Severe COVID-19 and deceased patients (P < 0.001). VWF levels were also significantly different between severe patients (153.5 ± 24.3 UI/dl) and non-severe ones (133.9 ± 20.2 UI/dl) (P < 0.0001). WBC and glucose levels were also significantly elevated in patients with Severe COVID-19. Plasma concentrations of all prothrombotic biomarkers were significantly higher in patients with a fatal outcome.


Subject(s)
Biomarkers/blood , COVID-19/blood , Inflammation Mediators/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/epidemiology , Case-Control Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitalization , Humans , Interleukin-6/blood , Male , Mexico/epidemiology , Middle Aged , P-Selectin/blood , Pandemics , Plasminogen Activator Inhibitor 1/blood , Prognosis , Severity of Illness Index , Thrombosis/blood , Thrombosis/etiology , von Willebrand Factor/metabolism
17.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055067

ABSTRACT

The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone-angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable state. In this article, evidence for the central role of fibrinolysis is reviewed, and the possible drug targets at multiple sites in the fibrinolytic pathways are discussed.


Subject(s)
COVID-19 Drug Treatment , COVID-19/blood , Drug Discovery , Fibrinolysis , Animals , COVID-19/complications , Fibrinolysis/drug effects , Humans , Molecular Targeted Therapy , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL